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Abstract--The accuracy of thermal conductivity and diffusivity measurements using the parallel wire 
method depends on the mathematical model used. This work presents an analytical solution of a model 
that takes into account the probe radius and the thermal contact resistance between the material and the 
probe. The model is compared to the classical hot wire model on the basis of the acquired experimental 

data. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

Among the transient techniques commonly used to 
measure the thermal properties of a wide range of 
materials, the hot wire method offers the dual advan- 
tage of speed (on the order of a few minutes) and not 
mandating large-size specimens. It requires recording 
of the punctual time evolution of the temperature and 
the spatial position of the measuring point and, in 
addition, the thermal power assigned to the wire must 
be known. 

The acquired data can be analyzed using various 
mathematical models that are capable of providing 
the thermal conductivity and diffusivity values. Owing 
to its notable effects on data precision, computational 
effort, and time requirements, the mathematical model 
must be carefully chosen. In this work, a new math- 
ematical model is presented and compared with the 
conventional hot wire model. The reliability and use- 
fulness of the two models in calculating thermal 
properties using the same experimental data are evalu- 
ated and compared. 

THE MATHEMATICAL MODELS 

In all the models, the material was assumed is®- 
tropic with two-dimensional conduction in the cyl- 
indrical coordinates and the z axis coincident with the 
heating wire. The temperature was assumed constant 
and uniform initially, when constant for radius 
approaching infinite. With these hypotheses, a geo- 
metrical straight line heated with power q per unit of 
length causes the following rise in temperature at 
radius r and time t [1] : 

= - - d u  = - Ei  - (1) 
® ( r , t )  ~ 2  r2/4at U ~ " 

Defining the Fourier number as F® = at /r  2 for high 
values (i.e. F® > 10 [1, 2]), equation (1) is usually 
written as 

®(r, t) = (q/4~z2)[ln (4Fo/C)  + O(1/Fo)] (2) 

with an approximation of O(1/Fo) ,  where C is a con- 
stant whose logarithm gives Euler constant 7. It should 
be stressed that equations (1) and (2) work only with 
r > 0. Since high F® values can easily be attained with 
low values of r, equation (2) is useful only for real 
wire temperatures. With logarithm properties 

®(rb, t) - ®(rb, to) = (q/4rt2) In (t/to),  (3) 

where r b is the actual wire radius. Obviously, only 
thermal conductivity can be measured in this way. 

Blackwell [3] provides a more complex model which 
accounts for the wire's mass and thermal contact 
resistance to the sample, assuming infinite thermal 
conductivity for the wire. His solution, which is valid 
only for high values of F® with wire radius r b (FOb), is 

q [1 [4Fob'~ 2 1 I f ,  //4/:bb) 
®(r, ,)= ~L nt~)+ ~ + ~Jlmt T )  

~kb 4FOb 2 1 :: 

Using Carslaw and Jaeger's analytical solution for 
a physical model that takes into account the wire mass 
[1], H~kansson et  al. [4] and Pettersson [5] show how 
diffusivity can be calculated along with thermal con- 
ductivity. However, their method requires lengthy cal- 
culation times and does not include the thermal resist- 
ance between the wire and the sample. Davis et al. [6] 
recommend the 'parallel wire' configuration, in which 
the thermocouple is located parallel to the heating 
wire to avoid perturbation in the cylindrical field. 
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NOMENCLATURE 

a thermal diffusivity [m 2 s J] q' = q/2rtrb [W m z] 
c specific heat [J kg K-  '] r radius [m] 
C constant R thermal resistance [m e K W -~] 
Ei integral-exponential function l time [s] 

(Ei(x) = ~ ( e  "/u) du) : = r~cZ/4a. 
Fo Fourier number = a l / r  2 

g~- p/a Subscripts 
/,~ first-type modified Bessel function, b probe. 

zero order 
K0 second-type modified Bessel function, Greek symbols 

zero order ~. = t H b C b / n r  b [ J  K m '] 
K, second-type modified Bessel ['unction, ;' Euler number 

first order ® temperature [K] 
m mass [kg] 2 thermal conductivity [W K m-J] 
p Laplace parameter p density [kg m 3] 
q power per unit of  length [W m ~] ~r standard deviation. 

Despite requiring a significant increase in calculation 
time, Laurent 's method [7] allows the taking into 
account of  the mass of  the wire. 

Very thin wire is useful in reducing mass, with the 
wire and thermocouple positions maintained by the 
specimen itself. In addition, it is useful in easily obtain- 
ing high Fourier  numbers and avoiding end effects 
which become negligible when the ratio of  the heating 
wire's length to diameter exceeds 100 [9]. 

In Fig. 1, illustrating the thermal resistance effects, 
the results of  equation (1) are compared with those of  
a numerical program in which finite elements are used 
to solve the energy balance according to Blackwell's 
physical model. The exponential integral Ei in equa- 
tion (1) is evaluated using the polynomials provided 
by Abramowitz  [8]. The wire temperature is assumed 
as the temperature calculated at a radius equal to that 
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Fig. 1. Nondimensional temperature variation at distance r 
from the heating wire for two models and different values of 

thermal resistance R [m 2 K W I]. 

of the heating wire. It can be readily seen that the 
main influence at work is the curve translation. 

Let us now consider the solution at r > rb. The 
Blackwell model describes a probe with radius b, ther- 
mal conductivity 2b, mass rnb per unit of  length, spec- 
ific heat c> and boundary surface temperature ®b" 
The material is assumed infinite, with thermal con- 
ductivity ). and thermal diffusivity a. In evaluating the 
temperature variation at radius r from the probe axis, 
it can be assumed that the probe thermal conductivity 
)-b is infinite owing to the smallness of  the probe radius 
rb in relation to that of  the thermocouple location. 
Hence. the following differential equation expresses 
the heat transfer in the system : 

~-'0 1 3 0  1 ~0  

3rT + r 3r a 3t 
with 

3 0  (Oh-O)  
--A 

~r R 
with 

(~0 3 0  b 
- )- ~--(2=rb) = q - tnh c~ 

('t" Ct  

b < r <  
t > 0 (5) 

{7=rb>0 (6) 

i" = rb with > 0 " 

(7) 

where R is the thermal resistance calculated in r = rh. 
The boundary conditions are 

Oh(t = O) = O(t  = O) = 0 

Jim,~ O(r) = O. 

If the product mbCb in equation (7) is assumed con- 
stant so that ce = nlbCb/7~rb, the result is 

[?0 0 ~ 0  b {i" = rb - 2  ~ = q ' - -  with (8) 
(,r 2 ~3t > 0 ' 

where q ' =  q/27rr~. Using the Laplace transformer 
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solving method with parameter p, equations (5), (6) 
and (8) give 

d2® 1 dO 
dr 2 + r ~ =  g20 (9) 

dO (Ob--O) 
--2 dr R (10) 

2dO = q~ ap (11) 
dr p ~- ®b, 

where g 2 = p/a. 
Equation (12), the properties of the modified Bessel 

function, and the boundary conditions can be used to 
find solutions ® having the analytical form 

® = Cjlo(rg) + C2Ko(rg), (12) 

where I0 is the zero order of the first-type Bessel func- 
tion, K0 is the zero order of the second-type modified 
Bessel function, and C~ and C2 are constants. 

Solving the three-equation system [(9)-(11)] gives 
the following solutions [3] : 

2rbq' A 
O(rb,p) = (13) 

p(rbap A + 22K~ (grb)) 

2rbq' Ko (gr) 
®(r,p) -- (14) 

pgrb(rb~ p A + 22K1 (ffrb)) ' 

where 

A = Ko(grb)/grb + (2R/rb)K1 (grb). 

Blackwell gave equation (4) as the approximate 
solution to equation (13). The method, as illustrated 
in Appendix A, was applied to equation (14) to evalu- 
ate temperature variations at distance r from the hot 
wire with the following results : 

1 q 1 l 

pbC b 22R 

THE TEST RIG 

The test rig is schematically illustrated in Fig. 2. A 
Teflon-insulated constantan wire with a diameter of 
0.075 mm was used for the line source. The wire was 
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Fig. 3. Nondimensional temperature variation vs Fo at the 
distance r = 20.1 mm for polystyrene; analytical [equation 
(1)1 and two sets of data (experiment A and experiment B). 

combined with an enamelled copper wire of the same 
diameter to produce the thermocouple for measuring 
temperature variations. The initial sampling condition 
was obtained at the reference junction and room tem- 
perature. The thermocouple voltage, measured by an 
HP-3478A multimeter with a resolution of 100 nV, 
was 0.036 mV K-~ in the measuring range, d.c. heat- 
ing current was provided by a Philips PE1537 sta- 
bilized power supply. 

An ammeter was used to control the current inten- 
sity during measurement of the wire's electrical resist- 
ance. Time and voltage were measured by a personal 
computer, which also provided the initial measure- 
ment point. 

Two polystyrene parallelepipeds measuring 
50 x 140 x 300 mm and two rubber parallelepipeds 
measuring 30 x 140 × 310 mm were used as specimens. 
The density of the materials was measured in relation 
to water using a scale with an accuracy of 0.0001 g. 
The wire and thermocouple were sandwiched in 
between the elements, with contact maximized by 
loading the specimens with pieces of iron of known 
weight. The distance between the heating wire and 
the thermocouple varied according to the specimen 
material. Figures 3 and 4 show the analytical evalu- 
ation of nondimensional temperatures vs Fo in com- 
parison with the experimental data as provided by 
equation (1). According to ref. [10], the pressure has 
no effect in the range considered. 

Load ~ ,Ammeter ~ 

I MuItimeter I i compo,or I 
i 
l 

Relerence [ 
ju.ctio, i I Powor I 

I supply F-- 
Fig. 2. Schematic of the test rig. 

THE EVALUATION OF THE PARAMETERS 

The solutions provided by equations (1) and (15) 
were compared. The parallel wire enabled evaluation 
of the thermal diffusivity with the ratio between tem- 
peratures evaluated at different times [6] 

O(r, t) Ei(--r2/4at) 
(16) 

O(r, to) E i ( -  r2/4ato) 

and fitting the experimental data by the least-squares 
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Fig. 4. Nondimensional temperature variation vs b)) at dis- 
tance r = 4.5 mm for rubber; analytical [equation (1)] and 

two sets of data (experiment C and experiment D). 

Table 1. Values of the test materials' thermal properties 
according to ref. [11] 

a 107 [m 2 s 1] 
2 [ W m  IK 1] 
p [kg m 3] 
c [ Jkg  ~K '] 

Material 
Rubber Polystyrene 

0.9954 6.424 
0.163 0.029 

1150 29 56 
1424 1220 

Fable 3. Mean values of the thermal properties obtained for 
the polystyrene specimen in five trials 

a i ~  107[m2s i] 
2_+0" [W m ' K ~] 0.0288_+0.0007 0.0353_+0.0051 
p_+a[kgm 3] 
c_+a [J kg I K I] 

Model 
Hot wire Proposed 
equations equation 

(1) and (16) (15) 

8.41 _+0.45 8.03_+0.29 

37_+2 37_+2 
926+ 123 1189_+281 

cal models give very close results. Tables 2 and  3 show 
that  the s tandard  deviat ion due to trial repeti t ion is 
very similar. While greater a for a was a t ta ined with 
the hot  wire method  for the polystyrene specimen, it 
is of  the same order  as tha t  obta ined by the proposed 
method.  At  the same time, Figs 3 and  4 show a good 
fitting of  equa t ion  (1) with the experimental  data.  In 
other  words, the precision a t ta inable  with the 
Blackwell model is comparab le  or less than  that  pro- 
vided by the simpler classical hot  wire model, p robably  
because the analytical solution requires numerous  
approximat ions  to use the Laplace t ransform. Also, 
the nonl inear  method,  which must  be used to fit data,  
requires a much  greater  computa t ion  effort than  that  
required by linear methods  and, in addit ion,  does not  
always produce convergence. 

Table 2. Mean values of the thermal properties obtained for 
the rubber specimen in five trials 

Model 
Hot wire Proposed 

equations equation 
(1) and (16) (15) 

a++_a 107 [m 2 s /] 2.1052+0.0005 2.0092_+0.0080 
2_+~r[Wm ~K '] 0.2838_+0.0005 0.2999_+0.0148 
p_+a [kg m 3] 1170_+13 1170_+13 
c_+a[Jkg t K '] 1152_+15 1276_+82 

method.  Once a was determined,  the thermal  con- 
ductivity could be evaluated by the least-squares 
method  with equat ion  (1). In the proposed model, 
parameters  a, 2 and  R were obta ined in equat ion (15) 
by fitting the data  by a nonl inear  approximated  
method.  The variables producing the E2 min imum 
start ing from a r a n d o m  value in the trial range were 
determined with the a lgor i thm il lustrated in Appendix  
B. The li terature values for the test materials  are 
shown in Table  1. 

Tables 2 and 3 show the results obta ined  at room 
temperature  ( ~  21°C). 

RESULTS 

When applied to the same set of  data,  the analytical  
solutions of  the classical hot  wire and  Blackwell physi- 

CONCLUSIONS 

Despite its ability to accurately account  for the 
physical s t ructure of  a system, the complex Blackwell 
model  is not  reliable for calculat ing thermal  proper-  
ties, especially when  experimental  testing is conducted 
on a simplified test rig. A simpler, faster model often 
gives bet ter  results. 
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APPENDIX A 
EVALUATING TEMPERATURE VARIATIONS 

II1 order to solve equation (14), variable z defined as 

r 2 C 2 
z = - -  (A1) 

4a 

is introduced. According to Blackwell [3] and Carslaw and 
Jaeger [1], an approximation of the order 9r~ can be used for 
9rbK1 (qrb) 

F C )'1 4 ,qrbK , ( g r b )  = l + ( g r b ) 2  In - + O( (qrb)  ) 

1+ pr~ 4a [ l n ( p z ) -  1]. (A2) 

The following simplification can be applied : 

• . ,  . [ - _  K o ( g r b )  -] K, GOrb)f . . . .  

L .~-b,~l t,qrb) l z ( 

~[zln(pz)- -z- - ln2(pz)]}  (A3) 

in which the following expression is used : 

K,) (qrO 1 {  #r2 
- (pz )  + "~a [z In (pz )  g%KiLqrb) } In 

-- z - - ln  2 (pz)]} + O((grb)4). (A4) 

The following expression can thus be used : 

p20~rbgrbA ~- -p2rbg 1 +  l n (pz ) - - I  
2 

x I2R -- ln (pz) - P~a (z ln (pz) -- z - ln 2 (pz) ) ] 

p2 ~rv, In (pz) 
~-- pZctrbR (A5) 

Z 

The last simplification allowed is of the order of O(z 4) : 

22pgrbKt (g%) ~ 22p + 22,O 2r~ 2 (ln (pz) 1)/4a. (A6) 

Consequently, equation (14) becomes: 

O(r,p) = 

2q'rbKo(gr) 

~f~ln (pz) - ~a Prbct p%ctR7 22p[1 + r2 r2 ~ - l n  (pz) + ~ - J  

q ~  rKo (gr) p~ r~ 
~- z L p + ( ~ - 4 a )  K°(yr) ln(pz) 

+ ~4a-- ~ - )Ko(gr )J .  (A7) 

Now, with Laplace antitransformers 

(t~b a ~rbR\ /r~ ~rbR'~ / r  .~\ 
- q 

___,(r~_~ a arbR'~l 
,AS, 

and 

t ' ( - l ) e x p (  r2/4aU) du 

t "~ l r e x p ( - r - / 4 a u )  du:=(,.u, ; 
2 Jo u(u-  t) 

£ ~ I / r 2 \ ~4at\ ' exp(r2-z/4at) du = ~t e x p L -  ~ a ~ ) l n ~ ,  ). (A9) 

Lastly, the convolution theorem gives 

p p ~ - ~ i  - ~ i .  (A10) 

APPENDIX B 

The complex method proposed by Box et al. [12] starts 
out by randomly and sequentially generating a set of P trial 
points in the space of the independent variables and eva- 
luating the function at each vertex. Each newly generated 
point is tested for feasibility, and if unfeasible, is retracted 
toward the centroid of the previously generated points until 
it becomes feasible. Given this set of points, the objective 
function is evaluated at each point, and the point cor- 
responding to the lowest value is rejected. A new point is 
generated by reflecting the rejected one at a certain distance 
through the centroid of the remaining points. Thus, if x R is 
the rejected point and ~ is the centroid of the remaining 
points, then the new point will be calculated as 

X m = . ~ - ~ ( x - - x R ) ,  (BI) 

where the size parameter 7 determines the distance of the 
reflection. The objective function and the constraints are 
evaluated at the new point. Three alternatives are possible : 

(1) The new point is feasible and its function value is not 
the highest of the set of points. In this case, the point 
with the highest value is selected and the procedure 
continues with a reflection. 

(2) The new point is feasible and its function value is the 
highest of the current set of points. Rather  than back- 
reflecting again (which would cause cycling), the point 
is retracted by half the distance to the previously cal- 
culated centroid. 

(3) The new point is unfeasible. The point is retracted by 
half the distance to the previously calculated centroid. 

The search ends when the pattern of points has shrunk 
so that the points are sufficiently close together and/or the 
difference between the function values at the points becomes 
small enough. 


